Skip to content

Hyperameter_tuning

Hyperameter Tunning

  • We settled with the Catboost model for good Quality prediction and low latency prediction

This is the table of hyperparameters and their performance metric

('number', '') ('state', '') ('value', '') ('datetime_start', '') ('datetime_complete', '') ('params', 'bagging_temperature') ('params', 'boosting_type') ('params', 'bootstrap_type') ('params', 'depth') ('params', 'learning_rate') ('params', 'objective') ('params', 'subsample') ('system_attrs', '_number') ('system_attrs', 'fail_reason')
0 0 TrialState.FAIL nan 2020-01-02 20:21:11.863237 2020-01-02 20:21:12.418973 nan nan nan 6 nan RMSE nan 0 Setting status of trial#0 as TrialState.FAIL because of the following error: TypeError('suggest_uniform() takes 4 positional arguments but 8 were given',)
1 1 TrialState.FAIL nan 2020-01-02 20:21:38.181381 2020-01-02 20:21:38.818264 nan nan nan 7 nan MAE nan 1 Setting status of trial#1 as TrialState.FAIL because of the following error: TypeError('suggest_uniform() takes 4 positional arguments but 6 were given',)
2 2 TrialState.FAIL nan 2020-01-02 20:22:14.453568 2020-01-02 20:22:15.072724 nan nan nan 2 nan RMSE nan 2 Setting status of trial#2 as TrialState.FAIL because of the following error: TypeError('suggest_uniform() takes 4 positional arguments but 5 were given',)
3 3 TrialState.COMPLETE 42.7238 2020-01-02 20:22:23.798479 2020-01-02 20:22:39.130715 nan Plain MVS 11 0.489043 MAE nan 3 nan
4 4 TrialState.COMPLETE 50.5916 2020-01-02 20:22:39.215907 2020-01-02 20:22:42.882038 nan Plain Bernoulli 5 0.529281 RMSE 0.607423 4 nan
5 5 TrialState.COMPLETE 42.5857 2020-01-02 20:22:42.963390 2020-01-02 20:23:43.219132 nan Plain Bernoulli 3 0.683597 MAE 0.374904 5 nan
6 6 TrialState.COMPLETE 46.9529 2020-01-02 20:23:43.311247 2020-01-02 20:24:41.338719 nan Plain MVS 1 0.0137888 MAE nan 6 nan
7 7 TrialState.COMPLETE 44.549 2020-01-02 20:24:41.431578 2020-01-02 20:25:29.054821 1.91368 Ordered Bayesian 1 0.384213 MAE nan 7 nan
8 8 TrialState.COMPLETE 41.917 2020-01-02 20:25:29.147049 2020-01-02 20:26:22.714733 nan Ordered MVS 5 0.226351 MAE nan 8 nan
9 9 TrialState.COMPLETE 50.1082 2020-01-02 20:26:22.825344 2020-01-02 20:26:34.244275 nan Plain MVS 12 0.547259 RMSE nan 9 nan
10 10 TrialState.COMPLETE 52.9363 2020-01-02 20:26:34.396108 2020-01-02 20:26:37.911406 nan Plain Bernoulli 5 0.603843 RMSE 0.303779 10 nan
11 11 TrialState.COMPLETE 51.0596 2020-01-02 20:26:38.002327 2020-01-02 20:26:46.647710 8.14127 Ordered Bayesian 4 0.754896 RMSE nan 11 nan
12 12 TrialState.COMPLETE 50.528 2020-01-02 20:26:46.733670 2020-01-02 20:26:51.632994 nan Ordered Bernoulli 4 0.51049 RMSE 0.546119 12 nan
13 13 TrialState.COMPLETE 42.2105 2020-01-02 20:26:51.725349 2020-01-02 20:27:16.891392 nan Ordered MVS 9 0.212695 MAE nan 13 nan
14 14 TrialState.COMPLETE 43.212 2020-01-02 20:27:16.980661 2020-01-02 20:27:50.826629 nan Ordered MVS 9 0.209423 MAE nan 14 nan
15 15 TrialState.COMPLETE 42.605 2020-01-02 20:27:50.911060 2020-01-02 20:28:22.338762 nan Ordered MVS 8 0.171057 MAE nan 15 nan
16 16 TrialState.COMPLETE 42.9026 2020-01-02 20:28:22.445095 2020-01-02 20:28:46.446403 nan Ordered MVS 8 0.29398 MAE nan 16 nan
17 17 TrialState.COMPLETE 42.9598 2020-01-02 20:28:46.558330 2020-01-02 20:30:10.208094 nan Ordered MVS 10 0.0427293 MAE nan 17 nan

Apart from the above Optimization, we did some tunning in the modeling phase (using catboost model)